Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
As edge computing and sensing devices continue to proliferate, distributed machine learning (ML) inference pipelines are becoming popular for enabling low-latency, real-time decision-making at scale. However, the geographically dispersed and often resource-constrained nature of edge devices makes them susceptible to various failures, such as hardware malfunctions, network disruptions, and device overloading. These edge failures can significantly affect the performance and availability of inference pipelines and the sensing-to-decision-making loops they enable. In addition, the complexity of task dependencies amplifies the difficulty of maintaining performant and reliable ML operations. To address these challenges and minimize the impact of edge failures on inference pipelines, this paper presents several fault-tolerant approaches, including sensing redundancy, structural resilience, failover replication, and pipeline reconfiguration. For each approach, we explain the key techniques and highlight their effectiveness and tradeoffs. Finally, we discuss the challenges associated with these approaches and outline future directions.more » « less
-
Pham, Tien; Solomon, Latasha; Hohil, Myron E. (Ed.)
-
Abstract We summarise the discussions at a virtual Community Workshop on Cold Atoms in Space concerning the status of cold atom technologies, the prospective scientific and societal opportunities offered by their deployment in space, and the developments needed before cold atoms could be operated in space. The cold atom technologies discussed include atomic clocks, quantum gravimeters and accelerometers, and atom interferometers. Prospective applications include metrology, geodesy and measurement of terrestrial mass change due to, e.g., climate change, and fundamental science experiments such as tests of the equivalence principle, searches for dark matter, measurements of gravitational waves and tests of quantum mechanics. We review the current status of cold atom technologies and outline the requirements for their space qualification, including the development paths and the corresponding technical milestones, and identifying possible pathfinder missions to pave the way for missions to exploit the full potential of cold atoms in space. Finally, we present a first draft of a possible road-map for achieving these goals, that we propose for discussion by the interested cold atom, Earth Observation, fundamental physics and other prospective scientific user communities, together with the European Space Agency (ESA) and national space and research funding agencies.more » « less
An official website of the United States government
